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Set closed = new WeakIdentityHashSet(); 

after(Connection c) returning: 
	 call(* Connection.close()) && target(c) {
	 closed.add(c);
}

after(Connection c) returning:
	 call(* Connection.reconnect()) && target(c) {
	 closed.remove(c);
}

after(Connection c) returning: 
	 call(* Connection.write(..)) && target(c) {
	 if(closed.contains(c))
	 	 error("May not write to "+c+", as it is closed!");
}    

Runtime verification of finite-state properties
 (in AspectJ)
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Runtime verification of finite-state properties

No static guarantees
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Runtime verification of finite-state properties

Potentially large runtime overhead
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Runtime verification of finite-state properties

When to finish testing?
8

8



The Clara Framework
“no write

after close”

JavaMOP, abc, ...

after(): call(...)   

compile & weaveabc

9
9



The Clara Framework
“no write

after close”

JavaMOP, abc, ...

after(): call(...)   

compile & weave

Quick Check

Orphan-Shadows Analysis

Nop-Shadows Analysis

Clara

abc

9
9



The Clara Framework
“no write

after close”

JavaMOP, abc, ...

after(): call(...)   

compile & weave

Quick Check

Orphan-Shadows Analysis

Nop-Shadows Analysis

Clara

abc

9
9



The Clara Framework
“no write

after close”

JavaMOP, abc, ...

after(): call(...)   

compile & weave

Quick Check

Orphan-Shadows Analysis

Nop-Shadows Analysis

Clara

abc

9
9



The Clara Framework
“no write

after close”

JavaMOP, abc, ...

compile & weave

Quick Check

Orphan-Shadows Analysis

Nop-Shadows Analysis

Clara

abc

9

  after(): call(...)   

9



Dependency State Machines

	 Set closed = new WeakIdentityHashSet(); 
	
	 after(Connection c) returning: 
	 	 call(* Connection.close()) && target(c) {
	 	 closed.add(c);
	 }

	 after(Connection c) returning:
	 	 call(* Connection.reconnect()) && target(c) {
	 	 closed.remove(c);
	 }

	 after(Connection c) returning: 
	 	 call(* Connection.write(..)) && target(c) {
	 	 if(closed.contains(c))
	 	 	 error("May not write to "+c+", as it is closed!");
	 }    
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	 Set closed = new WeakIdentityHashSet(); 
	
	 dependent after disconnect(Connection c) returning: 
	 	 call(* Connection.close()) && target(c) {
	 	 closed.add(c);
	 }

	 dependent after reconnect(Connection c) returning:
	 	 call(* Connection.reconnect()) && target(c) {
	 	 closed.remove(c);
	 }

	 dependent after write(Connection c) returning: 
	 	 call(* Connection.write(..)) && target(c) {
	 	 if(closed.contains(c))
	 	 	 error("May not write to "+c+", as it is closed!");
	 }    

Dependency State Machines

abstract

concrete
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	 Set closed = new WeakIdentityHashSet(); 
	
	 dependent after disconnect(Connection c) returning: 
	 	 call(* Connection.close()) && target(c) {
	 	 closed.add(c);
	 }

	 dependent after reconnect(Connection c) returning:
	 	 call(* Connection.reconnect()) && target(c) {
	 	 closed.remove(c);
	 }

	 dependent after write(Connection c) returning: 
	 	 call(* Connection.write(..)) && target(c) {
	 	 if(closed.contains(c))
	 	 	 error("May not write to "+c+", as it is closed!");
	 }    

finite-state property

dependency{ 
	 disconnect, write, reconnect;
	 initial	 connected: disconnect -> connected,
	 	 	 	   write -> connected,
	 	 	 	   reconnect -> connected,
	 	 	 	   disconnect -> disconnected;
	 	 	    disconnect: disconnect -> disconnected,
	 	 	 	   write -> error;
	 final     error: write -> error;
}
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Inverse case: match-preventing events
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in which the monitoring aspect “matches”, i.e., produces an externally visible

side effect like the error message in our example (line 13, Figure 2).

The first author’s dissertation [2, page 134] gives the complete syntax for De-

pendency State Machines and also explains sanity checks for these annotations;

e.g., each state machine must have initial and final states. Note that these checks

are minimal and support a large variety of state machines so that Clara can

support many different runtime verification tools. For instance, we allow multiple

initial and final states and we allow the state machine to be non-deterministic.

3.2 Semantics

The semantics of a Dependency State Machine refine the usual advice-matching

semantics of AspectJ [15]. In AspectJ, pieces of advice execute at “joinpoints”,

or intervals of program execution. Programmers use “pointcuts”, predicates over

joinpoints, to specify the joinpoints where advice should apply. In Figure 2, the

expression call(∗ Connection.disconnect()) && target(c) is a pointcut that picks

out all method calls to the disconnect method of class Connection. When the

pointcut applies, it binds the target object of the call to variable c.

Let A be the set of all pieces of advice and J be the set of all joinpoints that

occur on a given program run. We model advice matching in AspectJ as follows:

match : A× J → {β | β : V � O} ∪ {⊥}.

Given advice a ∈ A and a joinpoint j ∈ J , match(a, j) is ⊥ when a does not

execute at j. If a does execute, then match(a, j) yields a variable binding β,
which maps a’s formal parameters to objects.

Our formal semantics for Dependency State Machines will provide a replace-

ment for match, called stateMatch, that determines the cases in which a depen-

dent piece of advice needs to execute: informally, a dependent advice a must

execute when (1) AspectJ would execute a and (2) when not executing a at

j would change the set of joinpoints for which the Dependency State Machine

reaches its final state for a binding compatible with β. (We define “compatible”

later.) An optimal implementation, which determines exactly all cases in which a

dependent advice does not need to execute, is un-computable, as it would have to

anticipate the future behaviour (and inputs) of the program. The trick is there-

fore to implement statically computable approximations to stateMatch. At the

end of this section, we will present a soundness condition for stateMatch. This
condition uses the set of possible future behaviours to describe the permissible

(sound) implementations of stateMatch.

Semantics by example. Figure 4 contains a small example program that helps ex-

plain the intuition behind our semantics. The program triggers joinpoints which

the ConnectionClosed aspect monitors. AspectJ calls a program point that trig-

gers a joinpoint j the “joinpoint shadow” of j, or just “shadow” [16] for short.

AspectJ matching function:

Dependent advice allow family of 
possible optimized matching functions:

where compatible means that β1 and β2 agree on their joint domains:

compatible(β1,β2) := ∀v ∈ (dom(β1) ∩ dom(β2)) : β1(v) = β2(v).

In this predicate, dom(βi) denotes the domain of βi, i.e., the set of variables
where βi is defined.

Parameterized and projected event trace. Any finite program run in-
duces a finite parameterized event trace t̂ = ê1 . . . ên ∈ Ê∗. For any variable
binding β we define a set of projected traces t̂ ↓ β ⊆ Σ∗ as follows. t̂ ↓ β is the
smallest subset of Σ∗ for which:

∀t = e1 . . . en ∈ Σ∗ : if ∀i ∈ N with 1 ≤ i ≤ n : ei ∈ êi ↓ β then t ∈ t̂ ↓ β

We call such traces t, which are elements of Σ∗, “ground” traces; parameterized
traces are instead elements of Ê∗.

A Dependency State Machine will reach its final state (and the related aspect
will have an observable effect, e.g., will issue an error message) whenever a prefix
of one of the ground traces of any variable binding is in the language described
by the state machine. This yields the following definition.

Set of non-empty ground traces of a run. Let t̂ ∈ Ê∗ be the parame-
terized event trace of a program run. Then we define the set groundTraces(t̂) of
non-empty ground traces of t̂ as:

groundTraces(t̂) :=




�

β∈B
t̂ ↓ β



 ∩Σ+

We intersect with Σ+ to exclude the empty trace, which contains no events and
hence cannot cause the monitoring aspect to have an observable effect.

The semantics of a Dependency State Machine. We define the seman-
tics of Dependency State Machines as a specialization of the AspectJ-inspired
predicate match(a, e), which models the decision of whether or not the depen-
dent advice a ∈ A matches at event e ∈ E , and if so, with which variable binding.
We call our specialization stateMatch and define it as follows:

stateMatch : A× Ê∗ × N → {β | β : V � O} ∪ {⊥}

stateMatch(a, t̂, i) :=
let β = match(a, e) in�

β if β �= ⊥ ∧ ∃t ∈ groundTraces(t̂) such that necessaryShadow(a, t, i)

⊥ otherwise

Note that stateMatch considers the entire parameterized event trace t̂, plus the
current position i in that event trace. In particular, the trace t̂ contains future
events. The function stateMatch is therefore under-determined. This is inten-
tional. Even though it is impossible to pass stateMatch all of its arguments,
static analyses can approximate all possible future traces.

We have left a parameter necessaryShadow in the definition of stateMatch.
This parameter may be freely chosen, as long as it meets the soundness condition
defined below. A static optimization for Dependency State Machines is sound if
it meets the soundness condition.

Optimization goal: return ⊥ whenever possible
but β whenever necessary

16
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Soundness condition. The soundness condition requires that an event be mon-
itored if we would miss a match or obtain a spurious match by not monitoring
the event. A Dependency State Machine M matches, i.e., causes an externally
observable effect, after every prefix of the complete execution trace that is in
L(M), the language that M accepts.

Matching prefixes of a word. Let w ∈ Σ∗ and L ⊆ Σ∗. Then the matching
prefixes of w (with respect to L) are the set of prefixes of w in L:

matchesL(w) := {p ∈ Σ∗ | ∃s ∈ Σ∗ such that w = ps} ∩ L

Soundness condition. For any sound implementation of necessaryShadow
we require:

∀t = t1 . . . ti . . . tn ∈ Σ+. ∀i ≤ n ∈ N.
matchesL(M)(t1 . . . ti−1titi+1 . . . tn) �= matchesL(M)(t1 . . . ti−1ti+1 . . . tn)

=⇒ necessaryShadow(ti, t, i)

The soundness condition hence states that, if we are about to read a symbol
ti, and the monitoring aspect hits the final state when processing the complete
trace t but not when processing the partial trace which omits ti, or the other
way around, then we must monitor ti.

Note that Clara’s semantics assume that the advice associated with De-
pendency State Machines implement the monitor’s transition structure. In par-
ticular, any dependent advice which does anything beyond computing a state
transition must be marked final. Tools which generate Dependency State Ma-
chines, or programmers who write them, must take this semantics into account.

4 Clara as a framework

Version 1.0 of Clara includes three sound static analyses which eliminate irrel-
evant shadows. Recall from Figure 3 that Clara executes these analyses imme-
diately after weaving; the analyses plug into its static analysis engine. Analyses
may access all declared Dependency State Machines and the woven program.
The analyses also receive a list of joinpoint shadows.

For every shadow s, Clara exposes the following pieces of information:

– The dependent piece of advice a that s invokes, along with the name of a
and a list of variables that a binds.

– The source code position of s.
– The dynamic residue of s, which abstractly represents the runtime check that

determines whether a will actually execute. A static analysis can disable s
by setting its residue to the constant “NeverMatch”.

– A mapping from the variables that a binds at s to a points-to set [18] that
models all objects that these variables could possibly point to.

Any sound optimization must satisfy:

where compatible means that β1 and β2 agree on their joint domains:

compatible(β1,β2) := ∀v ∈ (dom(β1) ∩ dom(β2)) : β1(v) = β2(v).
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Quick Check

	 public static void main(String[] args) {   
	 	 Connection c = new Connection();
	 	 while(c.hasMoreData()) {
	 	 	 System.err.println(c.read());
	 	 }
	 	 c.close();
	 }
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Soundness condition. The soundness condition requires that an event be mon-
itored if we would miss a match or obtain a spurious match by not monitoring
the event. A Dependency State Machine M matches, i.e., causes an externally
observable effect, after every prefix of the complete execution trace that is in
L(M), the language that M accepts.

Matching prefixes of a word. Let w ∈ Σ∗ and L ⊆ Σ∗. Then the matching
prefixes of w (with respect to L) are the set of prefixes of w in L:

matchesL(w) := {p ∈ Σ∗ | ∃s ∈ Σ∗ such that w = ps} ∩ L

Soundness condition. For any sound implementation of necessaryShadow
we require:

∀t = t1 . . . ti . . . tn ∈ Σ+. ∀i ≤ n ∈ N.
matchesL(M)(t1 . . . ti−1titi+1 . . . tn) �= matchesL(M)(t1 . . . ti−1ti+1 . . . tn)

=⇒ necessaryShadow(ti, t, i)

The soundness condition hence states that, if we are about to read a symbol
ti, and the monitoring aspect hits the final state when processing the complete
trace t but not when processing the partial trace which omits ti, or the other
way around, then we must monitor ti.

Note that Clara’s semantics assume that the advice associated with De-
pendency State Machines implement the monitor’s transition structure. In par-
ticular, any dependent advice which does anything beyond computing a state
transition must be marked final. Tools which generate Dependency State Ma-
chines, or programmers who write them, must take this semantics into account.

4 Clara as a framework

Version 1.0 of Clara includes three sound static analyses which eliminate irrel-
evant shadows. Recall from Figure 3 that Clara executes these analyses imme-
diately after weaving; the analyses plug into its static analysis engine. Analyses
may access all declared Dependency State Machines and the woven program.
The analyses also receive a list of joinpoint shadows.

For every shadow s, Clara exposes the following pieces of information:

– The dependent piece of advice a that s invokes, along with the name of a
and a list of variables that a binds.

– The source code position of s.
– The dynamic residue of s, which abstractly represents the runtime check that

determines whether a will actually execute. A static analysis can disable s
by setting its residue to the constant “NeverMatch”.

– A mapping from the variables that a binds at s to a points-to set [18] that
models all objects that these variables could possibly point to.

Proving QuickCheck sound

symbolsThatNeedMonitoring:
- ∅ if QuickCheck succeeds
- Σ otherwise
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Quick Check

Orphan-Shadows Analysis

Nop-Shadows Analysis
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More details...
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Efficient Hybrid Typestate Analysis by 
Determining Continuation-Equivalent 
States (Eric Bodden)

In ICSE ’10: International Conference 
on Software Engineering, pages 5–14, 
ACM, 2010.
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Implementation
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Clara is an extension to the AspectBench 
Compiler www.aspectbench.org

Builds on Soot Program-Analysis Framework 
www.sable.mcgill.ca/soot/

Is extensible: may implement your own static 
analysis

Can partially evaluate any* AspectJ-based 
runtime monitor

*DSM annotation required
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Extending Clara
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http://www.bodden.de/clara/downloads/
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Overall success
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Why so effective?
Very precise abstractions:

Resolve aliasing using three different alias 
analyses (some context sensitive, others flow 
sensitive)

Analysis is path sensitive

Program properties:

Most objects only accessed in few methods

Most programs are mostly correct!
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Runtime Verification

AOP /
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J-LO (Bodden & Stolz, RV 05)

Tracematches (Allan et al., OOPSLA 05)

Tracecuts (Walker & Viggers, FSE 04)

JavaMOP (Chen et al., OOPSLA 07)

PQL (Martin et al., OOPSLA 05)

PTQL (Goldsmith et al., OOPSLA 05)

Hybrid typestate analysis (Dwyer et al., ASE 07)

Statically optimizing tracematches
(Naeem & Lhotak, OOPSLA 08; Bodden et al. ECOOP 07, FSE 08)

QVM (Arnold et al., OOPSLA 08)

Hybrid Race Detection with AJ
(Bodden & Havelund, ISSTA 08)

SCoPE (Aotani & Masuhara, AOSD 07)

Clara

S2A (Maoz & Harel, FSE 06)
M2Aspects (Krüger et al., SCESM 06)

Optimizing cflow (Avgustinov et al., PLDI 05)

Static Typestate Analysis (Fink et al., ISSTA 06)

Larva (Colombo et al., SEFM 09)
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More:

Tutorial paper,
pages 183–197
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dependency{ 
	 disconnect, write, reconnect;
	 initial	 connected: disconnect -> connected,
	 	 	 	   write -> connected,
	 	 	 	   reconnect -> connected,
	 	 	 	   disconnect -> disconnected;
	 	 	    disconnect: disconnect -> disconnected,
	 	 	 	   write -> error;
	 final     error: write -> error;
}
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