Clara: a Framework for
Statically Evaluating
Finite-state Runtime Monitors

Eric Bodden, Patrick Lam and Laurie Hendren

Waterloo ;Ef MC Gll 1

§&75 TECHNISCHE
(® » §r@‘/@ UNIVERSITAT
%y DARMSTADT

Integrate results of three communities

Runtime verincartion

Y

AOP /
Aspectd

Integrate results of three communities

/\ " Runtime Verification

AOP / / Clara

Integrate results of three communities

‘ /\ " Runtime Verification

/ generate monitors

AOP / / Clara

//
ASPQC'I’J /@ define events
/ & weave

monitors

[N

7 //

Finite-state properties

"After closing a connection c,
dont write to ¢ until ¢ is reconnected.”

Finite-state properties

reconnect, write :
close write

| disconnected }

close

"After closing a connection c,
dont write to ¢ until ¢ is reconnected.”

Runtime verification of finite-state properties

(in AsPecf:f)
Set closed = new WeakIdentityHashSet();

after(Connection c¢) returning:
call(* Connection.close()) && target(c) {
closed.add(c);

¥

after(Connection c) returning:
call(* Connection.reconnect()) && target(c) {
closed.remove(c);

¥

after(Connection ¢) returning:
call(* Connection.write(..)) && target(c) {
1f(closed.contains(c))
error("May not write to "+c+", as it is closed!");

JavaMOP

various spec.
languages

relational aspects

Java-STAIRS
aspec’rs

MSCs

= Ty g g

PN

.;

. ff

S

‘=.
W
\,_:
N

Runtime verification of finite-state properties

Runtime verification of finite-state properties

“no write § S8
after close”

Runtime verification of finite-state properties

after(): call(...)

Runtime verification of finite-state properties

e T ———— S — — |
. ‘ K
|“ . ’I
“ abc compile & weave |

Runtime verification of finite-state properties

TR R

Runtime verification of finite-state properties

Runtime verification of finite-state properties

No static guarantees

Runtime verification of finite-state properties

Potentially large runtime overhead

Runtime verification of finite-state properties

When to finish testing?

8

The Clara Framework

“no write
after close”

main(String args[1) {
w Connection(args[@]);

:
" = \
weconnect();

Aabogaabeloras[11);

The Clara Framework

“no write
after close”

main(String args[1) {

w Connection(args[@]);

B after(): call(...)

e

= = by
waconnect();

Aabagaabeloras(11);

The Clara Framework

“no write
after close”

main(String args[1) {
w Connection(args[@]);

after(): call(...)

B

public class ClaraTesy

public

reconnect();
rite(args[11);

The Clara Framework

“no write
after close”

won(args[@1);

JavaMOP, abc,

VECEOr mMONILL .o he vector();
synchronized public void create{lterctor 1, Collection v) {
HashSet monitorSet - new HashSet();
(I{Lfear“() monitorList. odd(new FailSafelterMonitor());
Itergtor it = monitorlist.iterator();
’ . while (it.hasNext())
“ g & 7 - - o | FoilSafelterMonitor monitor (FarlSafelterMonitor)it. next();
A 4 ‘

‘ monitor.create(i, v);
compile & weave

if (monitorSet.contains(monitor) 1| monitor. failed())
it,.remove();
else {

monitorSet, edd(monitor);

i L

(monitor, suceeded())

mchronized public void updatesource(Collection v) {
. TNy HashSet monitorSet new MashSet();
Qu-I-Ck CheCk S Iterator it monitorlist.iterator();
while (it.hasNext()){

FailSafelterNonitor monitor « (FailSafelterMonitor)it. next();
moni tor updotesourcelv);

(:Icl'atl \ (moni b contains{monitor) 1| monitor, foiled()

Orphan-Shadows Analysis " monitorSet, add(monitor);

if (monitor.suceeded()){

1
}]
synchronized public void next(Iterater 1) {
HashSect monitorSet « new HashSet();
Iterator it « monitorlist,iterator();
whil ‘it hasNext ()
FoilSofelterNMonitor monitor « (FoilSafelterMonitordit. next();
monitor . next(1);

if (monitorSet.contains(monitor) Il monitor.foiled())

Nop-Shadows Analysis

it.remove();

else {

The Clara Framework

“no write
after close”

main(String args[1) {
w Connection(args[@]);

public class ClaraTesy

public

reconnect();
rite(args[11);

Dependency State Machines

Set closed = new WeakIdentityHashSet();

after(Connection ¢) returning:
calL(* Connection.close()) && target(c) {
closed.add(c);

¥

after(Connection ¢) returning:
call(* Connection.reconnect()) && target(c) {

closed.remove(c);

¥

after(Connection c¢) returning:

call(* Connection.write(..)) && target(c) {
1f(closed.contains(c))
error("May not write to "+c+", as 1t 1s closed!");

10

Dependency State Machines

//

Set closed = new WeakIdentityHashSet();

dependent after disconnect(Connection c) returning:

calL(* Connection.close()) && target(c) {
closed.add(c);

dependent after reconnect(Connection c¢) returning:
call(* Connection.reconnect()) && target(c) {

closed.remove(c);

¥

dependent after write(Connection c) returning:

call(* Connection.write(..)) && target(c) {
1f(closed.contains(c))
error("May not write to "+c+", as 1t 1s closed!");

11

Set closed = new WeakIdentityHashSet();

dependent after disconnect(Connection c) returning:
call(* Connection.close()) && target(c) {
closed.add(c);

}

dependent after reconnect(Connection c¢) returning:
call(* Connection.reconnect()) && target(c) {

closed. remove(c);

¥

dependent after write(Connection ¢) returning:

calL(* Connection.write(..)) && target(c) {
1f(closed.contains(c))

error("May not write to "+c+", as it is closed!");

¥
dependency{ o ﬁ !
disconnect, write, reconnect; ,7/;L
initial connected: disconnect -> connected, €?~.
write -> connected, é;)‘
reconnect -> connected, q)‘e
disconnect -> disconnected; /c2’1t>
disconnect: disconnect -> disconnected, /c>€?,a)‘
write -> error; ‘&/
final error: write -> error;
¥

12

Semantics of Dependency State Machines

LLGEED)

c.write(..);

Semantics of Dependency State Machines

LLGEED)

c.write(..);

Semantics of Dependency State Machines

LLGEED)

e:c.write(..);

Semantics of Dependency State Machines

advice “close” must

execute at 1 if

LLGEED)

e:c.write(..);

Semantics of Dependency State Machines

advice “close” must
execute at el if
omitting

“close” at el

LLGEED)

e:c.write(..);

Semantics of Dependency State Machines

advice "close” must
execute at el if
omitting
“close” at el
may change the

events at which

. a DSM reaches an
LG

error Sstate

e:c.write(..);

Semantics of Dependency State Machines

advice "close” must
execute at el if
omitting
“close” at el
may change the

events at which

. a DSM reaches an
LG

error Sstate

e:c.write(..);

Inverse case: match-preventing events

advice “reconnect” must
c.close(); execute at el if
| omitting
“reconnect” at el

may change the

events at which

a DSM reaches an
LG

error state

e2:c.write(..);

Inverse case: match-preventing events

advice “reconnect” must
c.close(); execute at el if
| omitting
“reconnect” at el

may change the

events at which

a DSM reaches an
LG

error state

e2:c.write(..);

Inverse case: match-preventing events

advice “reconnect” must
c.close(); execute at el if
| omitting
“reconnect” at el

may change the

events at which

a DSM reaches an
LG

error state

e2:c.write(..);

Variable bindings matter

c.close();

eq:c.write(..);

15

Variable bindings matter

c.close();

1f (S0

eq:c.write(..);

15

Variable bindings matter

c.close();

1f (F0aee

eq:c.write(..);

15

Aspech mcn‘chmg function:
match: AxJ = {B]5:V—~0FU{L}.

Dependent advice allow family of
possible optimized matching Funchons

’ stateMatch AxE*x N — CANCE VAO}U{J_}
- stateMatch(a, t,1) :=
let 5 = match(a, e) in

if 3 # 1 A3t € groundTraces(t) such that necessaryShadow(a,t,)

1 otherwise

Optimization goal: return L whenever possible
but B whenever necessary

Aspech mcn‘chmg function:
match: AxJ = {B]5:V—~0FU{L}.

Dependent advice allow family of
possible optimized matching Funchons

’ stateMatch AxE*x N — CANCE VAO}U{J_}
- stateMatch(a, t,1) :=
let 5 = match(a, e) in

ﬂ------------q

if B # L A3t € groundTraces(t) such thatdnecessaryShadow(a,t,1)

1 otherwise

Optimization goal: return L whenever possible
but B whenever necessary

[stateMatch : Axéf* x N — {5\5:V4(9}U{J_}
 stateMatch(a, t,1) :=
let 8 = match(a,e) in \
{5 if B # L A3t € groundTraces(t) such that necessaryShadow(a,t,i)

1 otherwise

matches£(M) (tl ce ti—ltz’ti—l—'lu- .. tn) 75 matchesL(M) (tl ..

More on the semantics

Crana also supports Collaborative Runtime VeriScation, which distributes
nanentatos overhead among meltiple users, and ranking heusistios, which
ald programmers in inspecting remaining instrumentation manually
6 & 7). Space Lmitations preciode us from discussing ranking and Collaborative
Runtime Verification here.

CLARA & froely available as frow softwnre st hetp://odden.da/clara/,
along with extensive documentation, the first author's dissertation [2], which
describes CLARA in detail, and benchmarks and beschmark resalis

We next describe the oyatax and somastios of Dependency State Machines,
the key abstraction of CLARA. This atstraction allkws CLARA to decoaple run
tisne mcaitor inplesnentations from static analyses

3 Syntax and Semantics of Dependency State Machines

VERIFYING PINITE-STATE PROPERTIES
OF LARGE-SCALE PROGRAMS
Dependency State Machines extend the Aspect) lasguage o inchade semantic
information about relatioosdipn betwoen different piecrs of advice. Rustime ver-
eation toods which generate Aspoct) aspects can use this extenséon to produce
augmentod sspects. CLARA can resson about the supmentod aspects o prove
that programs never violate monitored propertios or 10 generate optisaised code.

L

Eric Bodden

Schood of (".'lh',m'.!f Science

McGill Undversity, Mo

3.1 Symtax

Our extensdons modify the Aspect) grammar o two ways: they add syntax for
defining Dependest Advice (14 and Dependency State Machines, The idea of
Dependent Advice s that pleces of monitoring advice are often inter-dependent
in the serse that the execution of one piece of advice anly has an offect when
executing before or after another picce of advice, on the same objects. Depen-
dency State Machines allow prograseners 1o make these dependencies explicie
#o that static analywes can exploit them. Our explanstions below rofer to the
ComnectionClosed example in Figure 2

The dependent modifier flags advice 10 CLARA for potential optimization:
sach advico may be cmitted from program locations at which it peovably bas o
effect o the state of the rantime monitor. Dependent advice must be named.
Lines 4, 7 and 10 all define dependem advice

The Dependeacy State Machines extersion emables users to specify state
mackines which relate diSerent pioces of dependent advice. Depeadency State
Machine declarations define state machines by incloding a kst of edges between
states and an alphabet; ench odge & labellod with a member of the alphabet.
CLARA infers the set of stazes from the declared edges. Line 16 declares the
state machime's alphabet: {discomn, write, recomn). Every symbol in the al
phabet references dependent advice froen the saame nepect. Lines 17-19 eousoer-
ate, for each state, a (potemtially empty) list of outgoing transitions. An emtry
"8l: ¢t ~> 32" meass “there oxiis a t-transition from sl to 827, Users can
also mark states as initial or f£inal (error states). Final states denote states

Jume 2000

PHESIS SUBMITTED 10 MOGHL UspvensiTy
N PAKTIAL FULFILLMEINT OF THE HEQUIREMENTS OF THE DEGAEE OF

DoCcToxR oF P'HILOsOeY

09 Erse Bodden

This Paper Thesis:
proves that analyses

er
9 Journal Pap obey “"necessaryShadow”

+ upcom\f\
18

The Clara Framework

“no write
after close”

main(String args[1) {
w Connection(args[@]);

= = by
waconnect();

Aabagaabeloras(11);

Quick Check

Orphan-Shadows Analysis

Nop-Shadows Analysis

20

==

: Quick Check f
W \\:.:-\‘ — i_;_‘-, e g
Orphan-Shadows Analysis
Nop-Shadows Analysis

20

public static void main(String[] args) {
Connection ¢ = new Connection();
while(c.hasMoreData()) {
System.err.println(c.read());

}

c.close();

reconnect, write

public static void main(String[] args) {
Connection ¢ = new Connection();
while(c.hasMoreData()) {
System.err.println(c.read());

}

c.close();

reccnnect, write

public static void main(String[] args) {
Connection ¢ = new Connection();
while(c.hasMoreData()) {
System.err.println(c.read());

}

c.close();

close

public static void main(String[] args) {
Connection ¢ = new Connection();
while(c.hasMoreData()) {
System.err.println(c.read());

}

c.close();

close

public static void main(String[] args) {
Connection ¢ = new Connection();
while(c.hasMoreData()) {
System.err.println(c.read());

close

public static void main(String[] args) {
Connection ¢ = new Connection();
while(c.hasMoreData()) {
System.err.println(c.read());

}

c.close();

Proving QuickCheck sound

=a € hybolsThatNeedoz’tm’g.ﬁ

' necessary TransitionQC(a, t, 1

symbolsThatNeedMonitoring:
- @ if QuickCheck succeeds

- 2 otherwise

matchesﬁ(M) (tl ce tz’—ltz’tz’—l—l “. tn) 75 matchesﬁ(M) (tl ..

— necessaryShadow(t;,t,1)

Proving QuickCheck sound

‘ necessary’I}‘ansztzonQC(a t z) =a € symbolsThatNeedMomtomng

symbolsThatNeedMonitoring:
- @ if QuickCheck succeeds

- 2 otherwise

Quick Check

Orphan-Shadows Analysis

Nop-Shadows Analysis

23

Quick Check

Orphan-Shadows Analysis

23

More detalils...

Efficient Hybrid Typestate Analysis by
Determining Continuation-Equivalent
States (Eric Bodden)

In ICSE ‘10: International Conference

on Software Engineering, pages 5-14,
ACM, 2010.

Efficient Hybrid Typestate Analysis by Determin
Continuation-Equivalent States

Eric Bodden
Software Technology Geoup
of Compener Sclence
Technische Universitit Darmstact, Germany
bodden@acm.org

ABSTRACT

Typostate analysis deteorming whether a progras viclatlo &
st of finito-stato propertion. Bocasso the typostate-saalysis
probless s satically undocidable, rescarchen have peoposed
a lybeid appoonch that uses residunl o itons 1o signal peogs
¢ vaslalions sl
s present an off tate analysis that
o Bow-sezaitive, partially context-sensitive, aod that gon-
eraten rowidunl runtise moston. To galn offickency, our
analysis caes procoe, Sow-sensitive information oo an inftra-
dels the remainder of the peo
gam wsing a Sowisensitive poloter abstraction, Uslike
Asalyses, our analyshs uses an addi
tioral backward analysis to pestition states ir2o oguivalence
classcn. Code locaticns that trarsiticn betwees oguivelent
Matos soo ievelovant and reguire no monitoring. As we sbow
his work, this noticn of eguivalent states & crucial w0
obtaining sound rumtime monitors
We peoved our analysis corsect, implemenmaod the analysis
in the CLana framowork for typostate aaalywis, and applied
it 1o the DeCapo benchamerk s Ia Balf 1he caven,
cur saalysis detormined exactly t perty-violating peo-
gram points. masy olher oo, the analysis reduced tie
et Of instrurmentat om points by larnge & ts, yiehling
sgnfoum spood- durizg restine nx wing

Categories and Subject Descriptors

D.24 Software Engimecring) Scftware/ Prograes VeriS-
cation— Vi dasmy

General Terms

Algorithne, Experimentation, Performance, Verificatlos
Keywords

typestate analysis, ststic analysls, rumime moaitoring

i conductod moot of this resensch a5 & PhD. stadent
at MeGill University, under supervision of Laucie Hes-
drem. This work wis supported by NSERC and CASED
[www. coand de)

Formiwmon o malic dptal o hand copees of &l or pert of B work Sr
pervonal or cloarooes sae b prartad without foo providod et copies me
S made o Saarbened for peadtis or WO mOvaTage and Tal Copeie
Scur this sotice and S full ctaton on B¢ Bt puge. To copy otharwise, 1
mpubing, 10 post oo scrven or 0 rdatriee o Lo, soguars prioe spoctic
PorTRision andox a fow

FCSE "0, May 38 2010, Cape Town, Sowh Africe

Cogyright 2010 ACM 978 | A48 TI9-4 1008 _S1000

Figwo | Flnite-state machine for “Coanection” property

1. INTRODUCTION

A typostate property 22 describes which operstions are
avaliabie on s object or oven a group of Inser-related
ycts, dependizg on this cbjoct™s o g X
the Lypestate, For intance, peogratnssess trist tol write Lo
a coanection handle that is currently in its “cosed™ state.
Figure 1 shows a nosdeterminstic linitestate macline for
this property, It monitors a connection’s “close”™, “reconnect
and “wrine” events and sigrals an orror at Bs accepting state.

Typostate propertion aid program undentanding, and cae
can even define Lype systens 5, that perevert peogram.
mers (roms cansing typestate errons, of derive statle typestsmte
analyses 17 12 try 1o determine whether & ghvent program
vickatos typestate propertios. Unfortunately, the typostate
analysis problemss 5 geserally undocidable. Roscnrchers bave
therefoor proposed a hybeid sppecach 9, 10, 165
static-nzalysis rooults o geaerate & resodanl rur
nor. This monitor oaptures actual property violations e
they occur, bt caly updates its internal stale sl scleva
starermnenss, s determned through stathc analysis

A coerect runtime mositor ot obworve overnts Be
and “write™ that can causme a property viokstion, but ako
everts like “roconnect” that may prevent the vioktion from
occurring. Misiag the former causes false negntives while
mbsding the httor canss falw positives, Le,, fale warsings
Either s waacceptabile, s runtime mositors mest hasdie
peoperty viclations exactly whon they occur. A cormect
static analysis must Lherofore deterssine program locatioes
that can trigger cither kind of sock “relevaat™ evenia

I this work we present an efficient novel ststic typostate-
analysls algorthm called Nop-shadows Analysis’ that s a
forward and a backward pass 10 idemily provally ircelevam
code locmtions, For every peogram statement s of interest
the fueweed analysis determzes the pasaible typastates that
can reach ». The addriceal backward amalysis partitioss
these siates inlo oquivalience disses. A program jocation

The aspecteoricntod-programming comimmenity uses the
termn “shadow™ (I8 to refer to intrumestaticn poist

http://www.bodden.de/pubs/bodden10efficient.pdf
http://www.bodden.de/pubs/bodden10efficient.pdf
http://www.bodden.de/pubs/bodden10efficient.pdf
http://www.bodden.de/pubs/bodden10efficient.pdf
http://www.bodden.de/pubs/bodden10efficient.pdf
http://www.bodden.de/pubs/bodden10efficient.pdf

Implementation

@ Clara is an extension to the AspectBench
Compiler www.aspectbench.org

@ Builds on Soot Program-Analysis Framework
www.sable.mcqill.ca/soot/

@ Is extensible: may implement your own static
analysis

@ Can partially evaluate any* AspectJ-based
runtime monitor .
PSM annotation reqyireg

25

25

http://www.aspectbench.org
http://www.aspectbench.org
http://www.sable.mcgill.ca/soot/
http://www.sable.mcgill.ca/soot/

Extending Clara

; Finding bugs through
L Wybrid Typestate Analysis

OVERVIEW DOCUMENTATION MAILINGLIST ~ DOWNLOADS = BENCHMARKS PUBLICATIONS CONTACT

Downloads

Binaries necessary to run Clara with its default analyses

J 4L, clara-1.0.0-complete jar This JAR file contains Clara and all its dependencies in compied form

To run Clara, just type java -jar clara-1.0.0-complete.jar. See here for usage instructions

Empty extension for researchers

We provide an empty extension %o Clara that aliows researchers 10 plug into Clara their own static typestate analysis with minmal effort

L clara-1.0.0.-emptyext.zip Download and unzip this extension. It containg an eclipse project with stubs for you to fill in, along

with plenty of comments

When extending Clara, you may find it handy 1o have Clara's source code available. We provide instructions 10 access the source code
below.

http://www.bodden.de/clara/downloads/

26

http://www.bodden.de/clara/downloads/
http://www.bodden.de/clara/downloads/

ASyncContainsAll
ASynclterC
ASynclterM
FailSafeEnum
FailSafeEnumHT
FailSafelter
FailSafelterMap
HasNextElem
HasNext
LeakingSync
Reader

Writer

jython
y o

31
0

128
-0

s, ~138
’Q\ﬂ
‘_,’110

81

luindex

Overall success

-

e
] [~
b

N
= Yo 2l

e
I
N \‘!/
o &
O
Ql

>—
w
(=]

|o e Ble

o}
[~
o

Why so effective?

@ Very precise abstractions:

@ Resolve aliasing using three different alias
analyses (some context sensitive, others flow
sensitive)

@ Analysis is path sensitive
@ Program properties:
@ Most objects only accessed in few methods

@ Most programs are mostly correct!

28

Related and previous work

Related and previous work

Tracecuts (Walker & Viggers, FSE 04)
PTQL (Goldsmith et al., OOPSLA 05)
PQL (Martin et al., OOPSLA 05)

Hybrid typestate analysis (Dwyer et al., ASE 07)

QVM (Arnold et al., OOPSLA 08)

JavaMOP (Chen et al., OOPSLA 07) / Clara

AOP /
Aspectd

SCoPE (Aotani & Masuhara, AOSD 07)

Hybrid Race Detection with AJ ‘ \
.. (Bodden & Havelund, ISSTA 08) -

7 ‘
// \

Optimizing cflow (Avgustinov et al., PLDI 05)
Statically optimizing tracematches

(Naeem & Lhotak, OOPSLA 08; Bodden et al. ECOOP 07, FSE 08)

29

Related and previous work

Clara: Partially Evaluating
Runtime Monitors at Compile Tim
Tutorial Supplement

and Pat

Techrihe Universitit Darmotadt, Cermany (]
¥ Univenity of Waterloo, (rhe, Canda
aric. boddesfcased de P

Alstrat, CLARA s & sovel statioanalysls Bramewark for partially eval
saling fialiestate runtisee swonibors ol cotnpile time CLARA s sl b
bt ate azalywes 10 mrictzalio vert Aopect) monilorng s
Loots evwtls triggrend
by program locatbons 1hat 1he s f 1o poowe safe. I the st
saalysis sacooeds on al loostons, (s gives siromg salle paar
M onon, the

Wl TRceinore as Aag

wiorial supplemsest, we provide redl

allow the reachir to obtaln b-dept

1 Introduction

It & challesging 10 implement rustime verifioation ool that are exprosive

sovertholow nduce cnly Mt rustisme overtond. It s sow widely acoopted that,

10 Yo expoossive eaosgh, restime- veriffoation tools st be able to track

monitoring state of Efferent objocts or even combinations of objects separately -
Mairfaining Lhese stales ially

test enocwtes monitored events freques

Even wone, to bo rosscsably confdens that a peogram dom not violate
mositored peoperty, prograsenens snst monter many different program
e more code locations & program contales ¢ which (e program may vioks
the mositored property, the more te Gaes cne iy noed 10 execule Lo appeo-
priately cover all possibie cxocution paths through these code loontions. Paired
with poterttially slow rustine monitons, this goad may be band if aot ispractical
10 achieve

Weo therefore developed the Craxa (¥ framework to partially ovaluste rust ime

itors a2 compide time, Partial evaluation beings two mais benedts

Thbs work wae mpported by CASED (www.cmod de

€ N and O Bbaby (Bde) BV 2000, ENCH SLA g T4, 0
T Soceger Veriag Derbe ebdebarg 2000

30

31

aoP / \
Aspect] J/ N
/@ def events C
& weave Y
& °) monitors

31

dependency{

disconnect, write, reconnect;

initial connected: disconnect -> connected,
write -> connected,
reconnect -> connected,
disconnect -> disconnected;

disconnect: disconnect -> disconnected,

write -> error;

final error: write -> error;

AOP /
Aspect] N\
/’. def. events (‘\
& weave 2
& °) monitors ‘

31

AOP /
Aspect] N\
/’. def. events O
& weave 7
& °) monitors ‘

el: c.close();

1T (RS
e3:c.reconnect();

e2: c.write(..);

e4: c.write(..):

dependency{

disconnect, write, reconnect;

initial connected: disconnect -> connected,
write -> connected,
reconnect -> connected,
disconnect -> disconnected;

disconnect: disconnect -> disconnected,

write -> error;

final error: write -> error;

31

Runtime Verification

generate monitors

AOP / Clara
AspectI J/ N\
, def. events (.\
y & weave 7
") monitors |

el:c.close();

1T (RS
e3:c.reconnect();

e: c.write(..);

e4: c.write(..):

dependency{

disconnect, write, reconnect;

initial connected: disconnect -> connected,
write -> connected,
reconnect -> connected,
disconnect -> disconnected;

disconnect: disconnect -> disconnected,

write -> error;

final error: write -> error;

g g s 8

e

E Bk &P

-
-
_/
a
&
-
-

fo & §e oz 2w Y

8
~

31

www.bodden.de/clara/

Runtime Verification dependency{

disconnect, write, reconnect;
initial connected: disconnect -> connected,

write -> connected,

enerate monitors
S reconnect -> connected,

AOP / 3 Clara ; dlsconnect.—> dlsconnectgd;
AspectT / N\ dlscoqnect. disconnect -> disconnected,
/@ def events (. write -> error;
y & weave Y final error: write -> error;
g ") monitors | }

el: c.close();

TN

g g s 8

e

E Bk &P

e2: c.write(..); e3:c.reconnect();

-
-
_/
a
&
-
-

fo & §e oz 2w Y

e4: c.write(..):

8
~

31

http://www.bodden.de/clara/
http://www.bodden.de/clara/

32

